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Abs t r ac tmThe  closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. 
The aperture decreases considerably more under  normal  stress and remains permanent ly  reduced, for the same 
ratio of  normal stress to unconfined compressive strength.  Also, a larger permanent  relative contact area 
develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent 
contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear 
increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these 
differences. 

We modeled this process by considering the surfaces to consist of paraboloids lying on a fiat plane and having a 
range of initial heights. Closure occurs by pressing a plane rigid surface against the ~hills', flattening their peaks. 
keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is 
assumed to vary linearly with the shortening strain, to a first approximation. 

This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite 
marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the 
model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also 
by the cataclastic deformation observed petrographically. The number of contact spots and the total length of 
contact seen in profile are also reasonably well modeled. 

These results have important implications for our understanding of frictional strength of fractures. The overall 
resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the 
contacts, both of which are affected by normal stress. Application of this model approach shows that the initial 
frictional resistance of some fractures in ductile rocks can be directly related to the topographic characteristics of 
the surfaces and the rheological properties of the asperities. 

I N T R O D U C T I O N  

FP, ACrVRES are very complex  structures.  They  have 
rough  surfaces and contact  is made  at only a few spots.  
M a n y  physical processes,  such as friction, wear,  ad- 
hesion,  electrical and thermal  contact ,  fluid and electri- 
cal flow, and contact  stiffness, depend  on the detai led 
nature  of  these contacts .  In part icular ,  the shear  stress to 
cause slip on these surfaces significantly depends  on the 
area and load-carrying capaci ty o f  these contacts.  Pr ior  
to slip, the surfaces undergo  compress ion  due to normal  
stress, a process that  may  modify  the contacts .  In o the r  
words ,  the normal  stress conditions the surface pr ior  to 
slip. 

In o rder  to unders tand  the initial frictional resistance 
of  fractures,  we need  to know more  about  this condi t ion-  
ing that  p repares  the surface for  slip. If  the surfaces are 
normal ly  loaded,  the area of  the contact  points  grows 
and more  contacts  are made.  This process  has been  
adequa te ly  mode led  where  the surfaces can be con-  
s idered to de fo rm elastically ( G r e e n w o o d  & Wil l iamson 
1966, Walsh  & G r o s e n b a u g h  1979, Brown  & Scholz 
1985, 1986) and plastically (Pullen & Wil l iamson 1972). 
M a n y  materials ,  however ,  do not  de fo rm in these ideal 
ways,  so these theories  cannot  be used. For  these ma-  
terials, the asperities, or  surface peaks,  de fo rm by com-  
plex processes  that  change  their load-carrying capaci ty  
by work  hardening  or  softening. T he  resistance to shear  
then depends  marked ly  on the normal  load applied. 

Calcite and gypsum are two minerals  that  deform in 
such a way  (Stesky & H a n n a n  1987). Fractures  contain-  
ing these minerals  develop  a p e r m a n e n t  closure that  is a 
larger fract ion of  the total closure and a more  rapid 
growth  of  relative contact  area under  initial loading than 
is predic ted  by elastic and plastic theories.  The  purpose  
of  this brief  paper  is to show the de fo rmat ion  of  surfaces 
in calcite marble  and present  a new theory  to account  for 
it. The  theory  incorpora tes  the geomet ry  of  the rough  
surfaces and the rheology  of  the deforming  asperities. 
The  insights gained f rom this simple mode l  will be 
applied to the p rob lem of  shear  resistance under  normal  
load. The  de format ion  of  ano ther  rock,  alabaster ,  com- 
posed  of  f ine-grained gypsum,  was also studied ( H a n n a n  
1988); the results suppor t  the conclusions presented  
here and will be published elsewhere.  

F R A C T U R E  C L O S U R E  

The  rocks used for our  s tudy were two varieties of  
calcite marble .  For  compar ison ,  we also studied a 
quartzi te ,  a rock that  has been found  to deform elasti- 
cally under  the condi t ions  of  our  tests (Brown & Scholz 
1985, 1986). 

Cores ,  15 mm in d iameter ,  were cut to a length of  25 
m m  and polished.  Each  sample was axially loaded sev- 
eral t imes to a max imum uniaxial stress of  about  half  of  
the unconf ined compres ive  strength (i.e. to a stress of  19 
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MPa for the marbles, and 39 MPa for the quartzite). We 
chose the maximum load to be approximately that for 
the onset of dilatancy, to minimize any permanent 
damage to the rock during cyclic loading. Repeated 
loading produced a repeatable stress-shortening curve, 
even after removing and replacing the specimen in the 
loading frame. We used the axial stress and shortening 
displacement for the final cycle as our measure of defor- 
mation of the intact part of the core. 

The conditioned cores were then cut in half normal to 
the core axis and the new faces were polished with 
grinding compound up to No. 1000 grit. At the final 
stage the surfaces were lapped with either Nos 36- or 80- 
grit powder to produce the required roughness. Re- 
peated tests showed that the final roughness was statisti- 
cally reproducible. Typical profiles are shown in Fig. 1. 

We used two methods to obtain these profiles. In one, 
the ground surfaces were traversed with a digital sam- 
pling profilometer, a diamond-tipped stylus and motor 
controller with amplifier and digitizing electronics. In 
the other, two surfaces were coated with a low viscosity, 
cold-setting epoxy and lightly pressed together. Follow- 
ing hardening of the epoxy (generally after 10-15 min), 
the glued core was cut axially and petrographic thin 
sections prepared. Photomicrographs of the sectioned 
surfaces were then sampled with a digitizing tablet. 

The latter method involved considerably more effort, 
but allowed us to examine and measure the surface 
geometry and permanent deformation after stressing, by 
applying a known load to the core during epoxy curing. 
For the quartzite samples, release fractures and bire- 
fringence appeared in the epoxy (normally intact and 
optically isotropic) suggesting that little or no stress 
remains in the epoxied contacts after load removal. In 
contrast, the unloaded epoxy was optically isotropic and 
intact in the marble samples, indicating that little elastic 
recovery occurred. Thus in both cases the observed 
contacts were permanent ones and few elastic contacts 
are preserved. 

Following the procedure originally used by Green- 
wood & Williamson (1966), composite profiles were 
calculated from pairs of surface profiles, grouped as in 
Fig. 1. The profiles were combined by calculating, point 
by point, the gap or aperture between them and sub- 
tracting the result from the maximum aperture found. 

The new rough surface has a height measured relative to 
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Fig. 1. Representative topographic profiles of No. 80- and No. 36-grit 
surfaces in calcite marble. The two profiles of each set represent the 
top and bottom surfaces. For the No. 36-grit surface, the profiles were 
measured by a profilometer and the data of one were inverted and 
positioned above the other at an arbitrary distance. The No. 80-grit 
profiles were measured from a thin section of a glued sample and show 
the true separation of the faces. In both cases, the heights are 
measured relative to that of the deepest valley on the bottom surface. 

the deepest composite valley (corresponding to the 
widest gap). 

To evaluate the surface roughness, a computer pro- 
cedure was used to select peaks on the profiles. The 
composite profiles were scanned using a moving window 
of 19 data points (i.e. a width of 95 /zm). The center 
point of the window was tested against the nine points on 
either side; if it was a maximum, then a peak was 
counted and its position stored. Otherwise, the window 
was moved by one position and the test repeated. The 
width of the window was chosen rather subjectively by 
comparing the computer peaks with those estimated by 
visual inspection. With the 95/,m window the computer 
picked the major peaks without including the small 
irregularities on the sides of these peaks. The wide 

Rock 

Georgia 
marble 

Carrara 
marble 

Bar River 
quartzite 

Table 1. Characteristics of the rocks studied 

Composition 

Grain size 
(ram) Porosity 

(average) (%) 

Calcite with about 0.7-2.2 0.5 
3--4% of quartz, (1.4) 
tremolite, phlogopite 

Calcite with less than 0.12-0.35 0.2 
0.5% muscovite (0.2) 

Quartz with 2-3% 0.25-0.65 0.2 
muscovite (0.35) 
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Fig. 2. Histograms of the heights of peaks of the composite surfaces 
calculatcd from several pairs of profiles such as those shown in Fig. I. 
The smooth curves are the Gaussian normal distribution functions 
fitted to the experimental data. The function parameters are listed in 
Table 2. The number of peaks sampled, n. is shown for each surface. 

window also eliminated the horizontal sampling prob- 
lem described by Whitehouse (1978). 

We used a different method to characterize the sur- 
face roughness from that used by most workers. Unless 
this difference is recognized, it may lead to some misun- 
derstanding about our results. Most workers have used 
each surface sample point as though it were an individual 
mechanically isolated asperity of whatever shape is 
assumed (e.g. hemispherical, rod-shaped, conical). 
Each of these 'asperities' has a height corresponding to 
the height of that sample point on the surface. We find 
this approach physically unreasonable. Rather, we 
sampled the surface and identified the actual peaks in 
the profile, within the width of our chosen window. Such 
asperities are more likely to behave as mechanically 
isolated features. 

Figure 2 shows histograms of composite peak heights, 
averaged over at least four profiles. Because of the 
relatively small number of peaks measured, the histo- 
grams are not smooth. Nevertheless, the distribution is 
approximately symmetric and normal. A Gaussian nor- 
mal function was fitted to the data and the smoothed 
distribution was used for all subsequent calculations. 
The peaks measured in these profiles do not, in general, 
correspond to the true asperity summits, since a random 
section would only rarely intersect an asperity at its true 
tip. The peaks are somewhat lower than the actual tips, 
giving a lower mean height than is actually present. 
Since the height used in the calculation is arbitrary, 
because the choice of base level is arbitrary, we do not 
think this is a major problem; only the estimate of 
surface separation should be affected. The dispersion of 
heights will be different, however; the sectioning effect 

Table 2. Topographic properties of peaks on the composite surfaces 

Rock Grit size 

Standard Radius of 
Mean peak deviation of curvature of 
height, h,, ,  peak height, A peak tip, fl 

(/~.m) ( / z m )  (,u.m) 

Marble 36 107 3l 28 
80 64 23 24 

Quartzite 36 72 19 33 
80 48 10 31 

will tend to bias the distribution towards lower heights, 
skewing the distribution slightly. Because of the low 
number of peaks counted, such skewing is not obvious in 
our data and will be neglected. 

As others have observed, the surfaces lapped with the 
coarser powder had a higher mean peak height, h,,, and 
larger standard deviation, A. As well, for the same grit 
size, quartzite had lower h,, and A than did marble. In 
fact, the No. 36-grit quartzite surface had about the 
same roughness as did No. 80-grit marble. Table 2 shows 
these measurements in detail. The mean radius of curva- 
ture of peak shown in Table 2 is calculated by fitting a 
quadratic curve to the nine data points centered on the 
peak and computing the derivatives of the fitted curve. 
Using nine data points for the fitting produces minimal 
quantization error (Whitehouse 1978). 

After roughening the cut surfaces, the cores were 
reassembled and reloaded to the same peak stress as 
were the intact cores. We calculated the fracture closure 
as the difference in displacement between the cut and 
intact cores for the same stress. This technique results in 
greater uncertainty than for a single direct measure- 
ment, in part because of the two required measurements 
and because of the necessary assumption that the intact 
portion of the cores and the steel-rock interfaces did not 
change in any way between measurements. We had no 
way to verify this assumption, but found that repeating 
the lapping and loading procedures produced closure 
values within about 2-3/~m, for maximum closures of 
50-100 /zm. Several such runs were averaged for the 
final closure curves shown in Fig. 3. 

All rocks show the same general behavior: a large 
initial displacement under light loads, but less displace- 
ment at higher loads. The rocks differ in the magnitude 
of total displacement at a given load and in the unloading 
behavior. Quartzite suffered the least closure displace- 
ment and almost totally recovered its displacement upon 
unloading. The amount of permanent closure was less 
than 14% of the total closure. In contrast, marble 
underwent large closures, about 80% of which were 
permanent. 

Because the roughness was about the same for all 
rocks, these differences reflect the relative strength or 
hardness of the minerals comprising these rocks and 
represent the extremes of a range of behavior. In an 
earlier study Tanoli (1982) found that the amount of 
permanent closure is inversely correlated with fracture 
stiffness, for rocks lapped with the same grit compound. 
Fracture stiffness is the rate of change of stress with 
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Fig. 4. C o m p a r i s o n  of  the f rac ture  s t i ffness of  severa l  rocks  at  25 MPa  
to the p e r m a n e n t  c losure  a f te r  re leas ing  the load.  The  curves  th rough  
the da ta  are d rawn  by eye.  The  rock type codes  are:  BG = Bar rc  
g ran i t e ,  MG = m e t a g a b b r o .  G D  = g ranod io r i t c .  MB = me tabasa l t ,  
PG = a l t e red  p y r o x e n c  g ranu l i t e .  DM = d o l o m i t e  marb lc .  These  
rocks  were  used in s tudies  of  se ismic  ve loci ty ,  c lcc t r ica l  conduc t iv i ty  
and  p e r m e a b i l i t y  in f rac tured  rock (Stesky 1985, 1986). (Af t e r  Tanol i  

1982.) 

closure displacement. Figure 4 shows these measure- 
ments. Although the roughness is probably not the same 
for all rocks, the presence of weaker minerals, such as 
dolomite in DM and chlorite and sericite in PG and MB, 
gave greater permanent  closures and lower stiffnesses 
than did the presence of the stronger quartz and feld- 
spar, which dominate GD,  MG and BG. 

This difference between hard and soft minerals is 
quite striking. During the past 20 years, considerable 
effort has been made to understand and model the 
closure of rough surfaces. For elastic and plastic ma- 
terials, the effort has been successful (for example, 
Greenwood & Williamson 1966, Pullen & Williamson 
1972, Walsh & Grosenbaugh 1979, Brown & Scholz 
1985, 1986). Our quartzite samples clearly behaved 
largely elastically, as others have found with similar 
rocks. Although we do not present the results here,  the 
elastic model of Greenwood & Williamson fits our 
measurements quite well (Hannan 1988). 

Marble definitely is not elastic at the stresses used in 
this study. But is a plastic model,  such as that of Pullen & 
Williamson (1972), adequate to explain our results? In 
order  to answer this question, we needed to understand 
the processes occurring on the deforming surfaces. Two 
further studies were undertaken: petrographic examin- 
ation of deformed surfaces and measurement  of the 
permanent  relative contact area developed during clos- 
ure. We found that calcite does not deform as a plastic 
material, so a new rheological model was needed to 
account for fracture closure in rocks containing minerals 
such as calcite. 

PETROGRAPHIC OBSERVATIONS 

Thin section views of contacting surfaces at various 
loads are shown in Figs. 5 and 6(a) & (b). At the lightest 
load, no contacts appear. Since very few contacts are 

likely at first, the probability of seeing one in any 
random section is small. The walls of the 'fracture" are 
only slightly damaged by the lapping process. At higher 
loads an increasing number of contacts are evident. The 
asperities are flattened mainly by brittle cracking, crys- 
talline twinning and bending of pre-existing twins. The 
damage zone tends to be limited to the region very close 
to the contact; occasionally, however, it extends into the 
wallrock (Fig. 6a & b). Brittle cracking would lead to a 
loss of load-carrying ability of the asperities, at a rate 
that should depend on the extent of cracking and hence 
on the amount  of flattening. 

CONTACT AREA 

The observation of the increasing number of contacts 
with load indicates that the contact area increases with 
load. We determined the actual contact area in two 
ways. Firstly, we measured the length of contact as seen 
in thin section as a fraction of the total section length. 
This length ratio is an estimate of the relative contact 
area, the ratio of true contact area to the nominal surface 
area. 

Secondly, the epoxied marble cores were dissolved in 
dilute hydrochloric acid, leaving a cast of the fracture, 
here called a resinfilrn (Fig. 6c). Where the two surfaces 
touched each other,  contacts appeared as holes in the 
film. We measured the number of contact holes within a 
13 x 13 mm grid, as well as the hole diameters in two 
perpendicular directions. The area of each hole was 
calculated assuming a simple elliptical shape, The ratio 
of total hole area to grid area is the relative contact area. 

The results of these two kinds of measurements are 
given in Fig. 7, showing good agreement between the 
two methods. As we found earlier (Stesky & H a n n a n  
1987), the relative contact area increased with stress, at a 
rate that increased with stress, reaching about 15% at 19 
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Fig. 5. Photomicrographs of thin sections of epoxied No.  80-grit surfaces of calcite marble (a) under very light loading, and 
(b) under a stress of 19 MPa. Note the large amount of contact in the loaded sample. The chance presence of a small quartz 
grain to the right of center in the loaded sample illustrates the indentation that occurs when materials of markedly different 
hardness come into mutual contact: because of the low concentration of quartz in this rock. such deformation is rare. Plane 

light: scale bar shown. 
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0.5 mm 

Fig. 6. (a & b) Detailed views of deformation at calcite-calcite contacts at 19 MPa stress, plane light: scale bar shown 
bet~ecn (a) and (b). (a) Cracking and the formation of twin lamcllac and bending of pre-existing lametlac. (b) Cracking. {c) 
Surface topograph.~ of a resinfilm, an epoxy cast of a "fracture" surface in marble, formed under 19 MPa stress. The solid 

black areas are holes where the two surfaces were in contact. Reflected light: scale bar sho~n belong. 
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average points. These lines are distinctly concave upward.  

MPa. The growth in contact area is even more striking 
for alabaster, reaching almost 30% at only 12 MPa 
(Stesky & Hannan 1987, Hannan 1988). In contrast, 
quartzite had a permanent relative contact area of less 
than 1% at 49 MPa, indicating that most of the defor- 
mation was elastic. Our results agree well with those of 
Logan & Teufel (1986) who measured 18% contact area 
developed after a small amount of slip in limestone at 25 
MPa and about 2% contact area in sandstone at 50 MPa. 

This acceleration in growth of contact area for marble 
and alabaster differs from that predicted for elastic and 
plastic materials. Elastic theory predicts a near linear 
increase (Greenwood & Williamson 1966), while plastic 
theory suggests an initial linear increase followed by a 
diminishing increase at higher stresses (Pullen & 
Wiiliamson 1972)• Again we find evidence that a differ- 
ent deformation behavior must be assumed for materials 
such as calcite and gypsum. We suggest that our results 
are compatible with a strain-weakening deformation 
process associated with the collapse of asperities by 
cataclasis. The deformation is localized at the asperities 
and the weakening requires a more rapid growth in 
contact area to accommodate the increase in stress• This 
effect is offset to some extent by the increase in number 
of contacts at higher loads• 

Another way to see this behavior is to follow the 
variation of average contact stress, ~c,with fracture 
closure (Fig. 8). Oc is the ratio of applied stress to the 
relative contact area and is a measure of the strength of 
the contacts. As shown in the figure, ~c decreases with 
increasing closure. The large gap in data for low closures 
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Fig. 8• The  variation with closure displacement  of the calculated mean 
contact stress, the product of  the nominal  applied stress and the 
relative contact area, showing the decrease in contact stress with 

closure. 

is present because considerable closure occurred before 
the applied stress reached the lowest value used for the 
contact area measurement. Our values for No. 80-grit 
surfaces agree very well with those found by Logan & 
Teufel (1986) during frictional sliding. Their measure- 
ments at 25 MPa indicate that the average contact stress 
levels out at normal stresses above those used in our 
study. 

NEW MODEL FOR FRACTURE CLOSURE 

The logic behind our model is similar to that of the 
Greenwood-Williamson model, but the details differ. 
As in their case, the two rough surfaces are combined 
into one composite surface, as described earlier. The 
problem then becomes that of a composite rough surface 
deforming against a fiat rigid one. The first contact is 
made by the highest composite asperity, followed suc- 
cessively by the next lowest asperities. Each asperity is 
assumed to deform independently, a reasonable as- 
sumption judging by the wide separation of contacts 
seen in the resin film. By modeling the geometry of the 
deforming asperities and the rheology of the material 
comprising the asperities, we can calculate the increase 
in contact area and applied stress with fracture closure• 

Contact  area 

As each asperity deforms it develops a flat top. 
Assuming that the asperity volume remains constant, 
neglecting the porosity created by fracturing, and that 
the deformation does not extend beyond the limits of the 
asperity, as suggested by the petrographic observations, 
we can calculate the area of flattening, that is the contact 
area. To do so we need to assume the geometry of the 
asperities. The mathematically simplest shape to use is 
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Fig. 9. Paraboloid model for a single asperity. The dashed shape is the 
undeformed asperity of original height, hoi, and base area. Ahi. The 
solid shape is the flattened asperity with height, h i, base area, Ahi, and 
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the paraboloid (Fig. 9). By equating the volumes of the 
undeformed and deformed asperities, we can calculate 
the contact area. 

The volume, Voi, of an undeformed paraboloid of 
height, hoi, and base area, Abi, is IAbihoi. The volume, 
Vi, of the flattened paraboloid with area of flattening, 
Aci, height, h i, and base a r e a ,  Abi,  is I ( A b i  + Aci )h  i. 
Equating these volumes gives: 

hoi - hi 
Aci = Zbi "hi (1) 

The total contact area is ~" ,=1Aci, where n is the 
number of asperities that have made contact. We as- 
sume that all the asperities lie at the same base level and, 
in total, fill the space available, these being reasonable 
assumptions considering the wide variety of sizes avail- 
able. Then the total fracture surface area is approxi- 
mately given by E~ ~ Abi. The total relative contact area 
is the ratio of these two quantities, or: 

O~ ~ ~ i n = l  mbi(h°i - h)/h . (2) 
~ N  A b  i 

i = l  

Here we set the height of the flat, hi = h, the same for 
all asperities. We express the contact area as a discrete 
summation, because of both computational convenience 
and the discrete nature of the peaks on the surfaces. If 
the number of asperities is very large, the summations 
can be replaced by integrals over the continuous height 
distribution function. 

For a paraboloid, 

Abi  = 2,"rfloihoi, (3) 

where floi is the radius of curvature of the asperity 
summit. 

i i i i i i ~ i 
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Fig. 10. The variation of relative contact area with closure for marble. 
The experimental data are shown by closed and open symbols and the 

theoretical fits are shown by solid and dashed lines. 

For simplicity we assume that floi is the same for all 
asperities, giving: 

~n hoi(hoi - h)/h 0~,.~ i=l  " (4) 
EN=I hoi 

This equation is a relationship between the relative 
contact area, a, and height of the flat, h, above the 
asperity base level. Since closure displacement, 6, rather 
than h is measured, we make use of the relation: 
h = S - t~, where S is the initial height of the flat, also 
called the fracture separation. S is not known indepen- 
dently; rather, we must calculate it from experimental 
data. 

Equation (4) can be tested using our contact area 
data. We use the known distribution of composite peak 
heights (Fig. 2), where the heights, hoi and S, are relative 
to the deepest valley found. Figure 10 shows the experi- 
mentally determined relative contact area, a, plotted 
against fracture closure, 6. By adjusting S, we found the 
best value which minimizes Z 2, the mean squared devi- 
ation of the experimental contact areas. The fits are 
quite good and give initial separations of 128 and 192 ~m 
for the Nos 80- and 36-grit surfaces, respectively (Table 
3). These separations correspond well to the high end of 
the distribution of asperity peaks found from profiling 
(Fig. 2). 

To prevent any confusion with the concept of initial 
separation defined in other ways, we emphasize that 

Table 3. Final fitting parameters for the paraboloid model applied to the marble data 

Initial Goodness-of-fit Initial contact Strain-dependence 
separation parameter, ~ stress, Oco coefficient, m 

Grit size (/xm) (area) (stress) (MPa) (MPa) 

36 192 0.002 0.6 234 -350  
80 128 0.014 0.8 415 -937  
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here we mean the maximum gap between the two 
surfaces at the time of first contact. This definition does 
not correspond to that for the maximum closure, when 
the two surfaces are in complete contact; deformation of 
the neighboring asperities will 'fill in" the gap long before 
the approaching face could make contact. This value of S 
certainly should no t  be used to calculate the per- 
meability of such fractures. 

A p p l i e d  stress  

In order to determine the stress needed for a given 
closure displacement, we must assume a theology or 
constitutive law for the material comprising the asperi- 
ties. Because marble showed large permanent closure. 
with relatively minor elastic recovery, we assume that 
the elastic deformation is negligible. It is not possible to 
separate out the elastic and inelastic portions of the 
closure, since the surfaces undergo major alteration 
during loading. Using the unloading curve or reloading 
the surfaces for a second cycle would not give the elastic 
deformation for the original undeformed surface. The 
assumption that all closure is permanent introduces a 
closure error of about 10%. 

Our evidence suggests that the asperity contact stress 
decreased with deformation. A simple way to model this 
is to assume that the contact stress, aci, for the ith 
asperity varies linearly with shortening, or: 

(ho, - h) 
Oci = aco + m (5) 

ho i 

where aco is the initial contact stress and m is the 
strain-dependence coefficient. 

A more complex rheology, with non-linear effects and 
strain rate dependence, is unnecessary at this stage of 
our knowledge. Such complexities can be included, if 
needed. Both of these material properties, aco and m, 
are assumed to be the same for all asperities, a reason- 
able assumption for monomineralic rocks. 

The normal force, F,;, acting across the contact of the 
ith asperity is o¢.e4~i. The total normal force, F,,, acting 
on all n contacting paraboloid asperities is then: 

n n ~ 
F n = Z F n i = O c o ~ A c i + m  Aci (h°i-h-''--~) (6) 

hoi i=l  i=1 i=l 

Using equations (1) and (3), the nominal applied 
normal stress, aa, acting over the entire surface is found 
to be: 

- E" (hoi - h)2/h E n hoi(hoi h ) /h  + rn i=l -(7) 
£~a ~ Oco i =  l ]~Ni=l hoi ~r~Ni=l hoi 

As for the contact area, the summations can be 
replaced by integrals over the appropriate continuous 
height distribution function. Despite the complexity, of 
this equation, it can be tested quite easily. The only 
unknowns are trio and m, the rheological parameters, 
both of which appear as linear variables with known 
coefficients. We use the calculated height distribution 
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Fig. 11. The loading portion of the closure curves for marble of two 
different roughnesses, showing the fitted theoretical curves. 

function, the estimated value of S, and the measured 
values of oa at various closures to find the best fit values 
of the rheological parameters. The experimental and 
fitted curves are shown in Fig. 11. The theoretical curves 
reproduce the general character of the experimental 
data quite well. The final topographic and theological 
parameters used to fit our data, along with the Z 2 values, 
are shown in Table 3. For computational simplicity, the 
data for the two roughnesses were fitted independently, 
although the rheological parameters should be the same 
for both. 

Despite the differences in the calculated parameters, 
two results are worth noting. Firstly, the initial contact 
stress, Oco, for the marble has an average value of about 
325 MPa, approximately one-third of the Vickers inden- 
tation hardness for calcite (1050 MPa, Brace 1960). This 
ratio of yield stress to hardness is that found for plasti- 
cally deforming metals in tension and compression 
(Tabor 1951, Bowden & Tabor 1964), suggesting that 
the calculated value of Cr¢o is at least a reasonable one. 
trco is a grain-scale property and cannot easily be related 
to bulk strength properties such as the unconfined com- 
pressive strength of the whole rock. Indeed, Oco is about 
10 times the unconfined compressive strength of the 
marble rock, although it may be close to the differential 
stress needed for deformation of this rock under suf- 
ficient confinement for bulk cataclastic flow to occur. 
Further work is needed to establish the significance of 
the contact stress value. 

Secondly, for both roughnesses, the strain- 
dependence coefficient, m, is negative, supporting our 
earlier suggestion that asperity failure is accompanied by 
strain weakening. Although the number of contacts 
increased with load, the loss of load-carrying capacity of 
the asperities dominated, giving a decrease in the aver- 
age contact stress (Fig. 8). However, as noted earlier, 
the average contact stress becomes approximately con- 
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stant at higher stresses (Logan & Teufel 1986). The 
number of new contacts diminishes rapidly and the 
average single asperity area increases. Evidently, at high 
stresses, m is not constant with closure strain, as we 
assumed, but may become zero or positive; that is, the 
asperities may strain harden at large amounts of flatten- 
ing. At this stage, many of the asperities are thin discs 
confined between undeforming plates, leading to a much 
higher strength. This effect is a commonly observed one 
and is the principle used when halite or pyrophyllite are 
employed in a solid-medium apparatus to achieve press- 
ures much above the normal strength of the medium. 
Clearly, then, our simple model is limited to situations 
where such extreme flattening does not occur. A way to 
extend the model to include such non-linearity in as- 
perity contact stress is to use a quadratic, or higher order 
polynomial, equation for the rheological function. The 
statistical problem becomes one of multilinear re- 
gression. 

SOME PREDICTIONS 

Two additional quantities were measured that were 
not included in the model: the total number of contacts 
and the total contact length observed in the profiles. 
Both quantities can be calculated from the model and 
provide a check on the validity of the model. 

The number of contacts, nc, at a given load is a 
function of the distribution of composite peak heights, 
but not of their shape or material properties: 

s 

= N ~ f(hoi ), (8) nc 

hoi=h 

where N is the total number of asperities, hoi is the initial 
height of the ith asperity, h is the current fracture 
separation, S is the initial separation, and f(hoi ) is the 
initial height distribution function of the composite 
surface. 

Since our data are based on profiles, nc and N are 
given per unit traverse length; both can be measured 
from the thin sections of surfaces epoxied under load. 
The initial height distribution is the Gaussian function 
fitted to the histogram of peak heights of undeformed 
surfaces. The measurements and model curves are 
shown in Fig. 12. Over the range of stresses used, the 
number of contacts increases approximately linearly 
with stress and is reasonably well accounted for by the 
theory. 

The total contact length observed in profiles of con- 
tacting surfaces can be calculated by assuming an 
asperity shape. Using equations (1) and (3), we express 
the contact area for the ith paraboloid asperity as: 

Aci = 2~fl h°i( h° h- h ) 

Since the contact radius, Rci = X/-~/hr, then 

/2fl  hoi(hoi - h) Rci 
h 

(9) 
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Fig. 12. The variation with normal  stress of  the number  of contacts per 
cm of profile in marble,  as seen in thin section. The range of variation 
at each stress is shown by bars. The solid and dashed lines are the 
calculated number  of  contacts,  based on the fitted height distribution 
function and initial separation derived from the theoretical fit to the 

relative contact area data. 

For any random traverse of the surface, the contacts 
are crossed along a chord to the circular contact area. 
For a large number of intersections, the expected length 
of the chord, lci, is V'2Rcg. Thus the total contact length, 
/c, is 

" /hoi(h~-h) 
1~ = 2X/-fifl Z ~' h 

i= l  

(10) 

As before, the radius of curvature, fl, of all paraboloid 
asperities is assumed constant, equal to the average for 
all asperities./3 was calculated from the profiles by fitting 
a circular arc to groups of five data points centered on 
the peaks and averaging the results. 

The measured and calculated contact lengths are 
shown in Fig. 13. The fit to the data is reasonably good, 
considering the added uncertainty in the value of ft. The 
paraboioid model tends to overestimate the contact 
length, a conclusion drawn from data for other rocks, as 
well (Hannah 1988). The actual asperities are generally 
more peaked than assumed for the paraboloid, giving 
smaller contact lengths than was calculated. We devel- 
oped the model with a cone geometry as well, and found 
that the actual measurements are bracketed by the two 
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Fig. 13. The variation with normal  stress of  the total length of contact 
in marble seen in thin section. Representat ive sample variations are 
shown with bars. The  solid and dashed lines are calculated from the 
model,  based on the theoretical fits to the contact area and closure 
data.  as well as the asperity tip curvature est imated from the composite 

profiles. 
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model predictions (Hannan 1988). These results will be 
presented in a later paper. 

Both the number of contacts and total contact length 
increased approximately linearly with normal stress. 
This result means that the average size of contact is 
nearly constant over the range of stresses used. Conse- 
quently, the growth in contact area is accomplished 
mainly by an increase in the number of contacts. The 
number of new and, hence, small contacts increases with 
load, counteracting the growth of the existing contacts 
and keeping the average size constant. However ,  at 
some stress, not much higher than was used in our 
experiments,  the number of new contacts would not 
increase as rapidly, since the peaks on the lower side of 
the distribution mean would begin to make contact. At 
this stress the mean contact size would increase, but the 
total contact area would increase less rapidly with stress. 
These predictions describe precisely the observations of 
Logan & Teufel (1986) of contacts developed during 
frictional sliding at normal stresses between 10 and 25 
MPa. Thus despite the difference in procedure,  the 
results of these two studies agree very well. 

At a high percentage of contact area, the large con- 
tacts would begin to interfere with each other,  a process 
we call coalescence, leading to a further lowering of the 
area growth rate. Thus, the contact area-normal  stress 
curve (Fig. 7) would be sigmoidai in shape over a larger 
range of stresses than we used. Further measurements at 
high stresses will be needed to confirm the validity of our 
predictions. 

IMPLICATIONS FOR ROCK FRICTION 

As we stated at the outset, the shear force needed to 
cause slip on rough surfaces in point contact depends on 
both the contact area and the compressive and shear 
strengths of the contacting asperities. The normal stress 
applied prior to slip will affect these quantities. The 
contact area increases rapidly with stress and the con- 
tacts weaken but at a diminishing rate. The result is an 
increase in applied shear stress with normal stress, as is 
commonly observed. 

To model this process we assume that the surfaces are 
unmated and in point contact, with no significant inter- 
locking of opposing asperities. In practice interlocking 
may occur, but our petrographic observations suggest 
that it is relatively rare for the roughnesses used in our 
study. After closure, most contacts on the fairly smooth 
surfaces become flat and approximately parallel to the 
overall surface (e.g. Fig. 5b). Where indentation of rigid 
grains into softer ones occurs (e.g. Fig. 5b) there will be 
significant additional shear resistance to side motion. In 
that case, the deformation becomes one of ploughing, a 
style not modeled here. 

Where there is significant mating of the two surfaces, 
such as in a natural joint, interlocking may become very 
significant. For example, Reeves (1985) and others be- 
fore him have shown that the friction coefficient of such 
surfaces at low normal stresses depends on the contact 

gradient, that is, the asperity slope. This has been called 
the dilation angle. Such interlocking may also develop 
after some slip on unmated surfaces, although we have 
no direct evidence of it. Since we are only concerned 
with the onset of slip, such later effects will not be 
considered. 

Although other  approaches to modeling the frictional 
resistance of rough surfaces have been used, we chose an 
analysis similar to that for normal stress. The nominal 
shear stress, r, acting between two rough surfaces in 
contact is rca, where rc is the total contact shear stress 
supported by the deformed asperities and a is the 
relative contact area. By analogy with the case for 
normal stress, rci, the contact shear stress for the ith 
asperity, may vary with the amount of asperity defor- 
mation, as 

r:ci = r c o  + m* ( h ° i  - -  h) (11) 
h o i  

where rco is the initial contact shear stress and m* is the 
strain-dependence coefficient for shear. 

The total shear force, F,, acting on n contacting 
paraboloid asperities, each contact having area, Aci  , is: 

--n m* ~ Zci(hh~i- Fs = rco y ,  Ac i + h) (12) 
i=1 i=1 

Using equations (1) and (3), the nominal applied 
shear stress, r a, acting over  the entire surface is found to 

~ a ~ - - T c o  

be: 

Y~=I hoi(hoi- h)/h + m 
y N ho i i=I  

2 ~ (hoi- h)2/h * l = l  

EN=I h o i  

(13) 

The initial frictional resistance can thus be related to 
the topographic characteristics of the fracture surfaces 
and the strength of the contacting asperities. We need to 
know the closure and initial shear strength at various 
normal stresses for a surface with a known distribution 
of initial asperity heights. 

We can carry the model one step further, by noting the 
similarity in form of equations (7) and (13). Using 
equation (4), we have 

oa = aClco + bm (14) 

ra = arco + bm*, (15) 

where b represents the second summation factor in 
equations (7) and (13). 

Eliminating b gives 

m* (m*Crco - mrco) (16) 
T a = - - G  a - -  a 

m m 

Equation (16) shows that initially at low normal stress 
where the contact area is very small, ra increases 
approximately linearly with era, with a coefficient of 
friction equal to m*/m, the ratio of shear and normal 
strain-dependence coefficients. At higher normal 
stresses, a increases, so that the second term becomes 
significant. Countless observations of rock friction show 
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that this term must  be positive because ra increases less 
rapidly at high normal stresses. Since a is positive and m 
is negative, a necessary condition is: 

m*trco < mrco. (17) 

Since Oco > rco, then m* is negative, corresponding to 
a loss of single-asperity shear strength by collapse during 
normal closure, as we would expect. Thus the model is in 
agreement with friction observations and physical intui- 
tion. 

To use equation (16), we need values for the material 
properties, rco and m*. They can be obtained from 
equation (13), in the same manner as we determined tyco 
and m. Another way is to use friction data, along with 
measurements of contact area. Rearranging equation 
(16), we get: 

amrco + (o,  - aaco)m* = mr , .  (18) 

This is a linear equation in rco and m*, with the other 
parameters known from closure and friction experi- 
ments. For calcite-bearing rocks, the data from Logan & 
Teufel (1986) are not sufficient to calculate these two 
shear parameters, since only two of the three friction 
experiments are in the range of conditions where our 
theory appears to be valid. Their two low-pressure 
measurements give a friction coefficient of about 1, 
indicating that m* is about the same as m (from equation 
16) and that r~o is approximately equal to a~o. 

Without experimental data we cannot carry the model 
any further. Nor, unfortunately, does the model appear 
to contribute to the puzzle of Byerlee's law, the curious 
observation that at high normal stresses, almost all rocks 
have about the same friction strength for the same 
normal stress (Byerlee 1978). However, the model does 
provide a framework for understanding the influence of 
environmental factors on the frictional strength of frac- 
tured rock. The geometric characteristics of the surface 
are isolated in the model from the material properties of 
the deforming asperities. Time, temperature and reac- 
tive fluids will modify the material properties in ways 
that can be studied without the complications of surface 
geometry. 

CONCLUSION 

Despite the simplistic nature of the geometry and the 
somewhat arbitrary assumption of rheology, this model 
does a creditable job of accounting for the closure of 
unmated, rough surfaces under stress and the contact 
area that develops during that closure. It includes infor- 
mation about the distribution of peak heights, as well as 
the petrographic evidence of the deformation mechan- 
isms. 

This model can form the basis for further study of the 
normal and shear deformation of fractures in rocks and 

other materials that deform non-elastically. Although in 
this case, the deformation was largely by brittle pro- 
cesses, so that strain weakening occurred, the model is 
sufficiently general that other strain-dependent rheolo- 
gies can be studied, at least to the extent tfiat a linear 
strain dependence is approximately correct. It can be 
easily extended to include more complex dependencies 
on strain. 

The physical significance of the rheological para- 
meters is not known at this time. Application of this 
model to other materials requires that these parameters 
be determined for each material. Further study is 
needed to relate these parameters to other more easily 
measured properties, such as mineral hardness. 
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